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Statistics of largest cluster growth through constant rate random filling of lattices
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In this paper we consider a percolation model where the probabilfty a site to be occupied increases
linearly in time, from 0 to 1. We analyze the way the largest cluster grows in time, and in particular, we study
the statistics of the “jumps” in the mass of the largest cluster, and of the time delay between those events.
Different critical behaviors are observed below and above the percolation threshold. We propose a theoretical
analysis, and we check our results against direct numerical simulations.
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I. INTRODUCTION grated fromp=0 to p=p, also displays a power law form,
but with adifferentexponent. Concerning the delay between

Percolation is now a well-known theory that has beenjumps we show that their distribution consists not in one, but
applied successfully to a wide variety of problems. Mosttwo power laws. These predictions are checked against nu-
critical properties of this model have been clarified through anerical simulations.
considerable number of published works. Many excellent re- The motivation for this work is twofold. First, there are
views on this theory can be found in Ref4—6]. systems in which the percolation control parameter can be

However, most studies either concerned the static propecontinuously adjusted, such as composites in which the tem-
ties at the critical point, or time-dependent properties of variperature allows to open or close contacts between particles
ants of the standard percolation problem since no time i§12,13. In such systems, one may be interested in quantify-
present in the latter. These variafgsich as “spreading per- ing the fluctuations in any macroscopic property sensitive to
colation” [7], “invasion percolation”[8], “stirred percola- the connectivity(such as the electrical conductivitySimilar
tion” [9], “self-organized percolation” [10], “kinetic attempts have been proposed in a related context such as the
growth models”[11]. etc), which include time, generally study of resistance jumps during mercury porosimetry at the
also affect the generic definition of the percolation model.onset of the breakthrough point, by Katzal.[14] (the latter
Albeit most often scaling relations can be derived to relateproblem was revisited theoretically in Refgl5,16]). In
the dynamical properties of these models to the critical exthose problems, it may be difficult to adjust the control pa-
ponents of percolation, the connection is indirect. rameter to stop the system precisely at its percolation thresh-

In the present study, we consider the standard percolatioold. However, a more secure procedure would be to vary
model, with an occupation probability continuously in-  continuously the control parameter in order to scan through
creasing in time from 0 to 1. In practice, a new empty sitethe percolation. We have chosen such a procedure here. The
will be added(*“occupied”) at every time step in a lattice of mass of the largest cluster is only one among the many ob-
finite sizeL, so thatp=t/L9. We specifically study the evo- servables that can be chosen, but it is the most natural critical
lution of the largest cluste¥i (t) at each time step. Its mass quantity to consider in the context of percolation since it
does not increase in a steady fashion, but rather by suddeoncerns the order parameter, and as mentioned above, it
increases|hereafter referred to as “jumps’j=M(t+1) already displays surprising features. The second motivation
—M(t)] separated by long time intervalsalled “delays”  comes from algorithms recently proposed to locate the criti-
hereafter where the largest cluster remains unchanggd ( cal point. The principle of such methods is to either increase
=0). Those jumps and delays do vary considerablygses or decrease the control parameter, depending on whether the
from 0 to 1. However, as will be shown below, if the distri- order parameter is smaller or larger than a prescribed value.
butions of jumps and delays are integrated over the entirdhe convergence of the method and the oscillation of the
range ofp values, those distributions will capture some as-control parameter around the critical point are controlled by
pects of the critical behavior encountered in the vicinity ofthe “noise” (both jumps and delays to use the above termi-
the percolation threshold. Since fluctuations are singular anology). These two applications are not specifically studied
the critical point, the above quantities receive dominant conin the present paper, but they both require the results pre-
tributions from the vicinity of the percolation threshold, and sented herewith.
thus the statistics of the jumps preserve information from the We use here the standard notations used in percolation
critical point although the latter has been swept through irtheory.p denotes the occupation probability, apgdthe per-
this process. Indeed the statistical distribution of jump sizesolation threshold. We also cak the differencee=|p
has a simple power-law behavior. Surprisingly, if we stop at—p|. L is the system size. Classically, the correlation length
the percolation threshold, the jump size distribution inte-£ and probability to belong to the infinite clustét,. , have a
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critical behavior characterized by the exponentand g,
such that¢e|e|~* and P.,« e? above thresholdD will de-

note the fractal dimension of the infinite cluster at the perco- 20
lation threshold. It is related to the previous exponents
throughD=d— 8/ v. f(or)

We will first consider the time intervals between jumps,
considering the values above percolation below the thresh- b o L !

old, and then below threshold. Then we will study the distri-
bution of the jump amplitude, above and below the percola-
tion threshold.

II. DISTRIBUTION OF TIME INTERVALS BETWEEN O-OO.OT o >0

JUMPS ABOVE PERCOLATION THRESHOLD @-D) o

Let us consider the limit of a large system size so thatthe g5 1. Spectrum of the delay between jumps in tke) for-

addition of a few sites does not affect the valugpoThen at  y3jism. The first steep slope describes the jump distribution above

eachp, the probability distributionp,(t,€) of time intervals  percolation threshold, whereas the second one is relative to the
t, between jumps is an exponential distributi®oisson pro-  jumps occurring below threshold.

cesg of characteristic timeT« 1/Pj,,, where Py, is the

probability that the newly added site is the nearest neighbor The above scaling law is mostly of theoretical interest,
to the I_argest cluster. The number of those vacant sites isince observing this power-law decay over one decade in
proportional to the mass of the largest cluster itself. por gjze requires in two dimensions systems of dize10%, a
larger than the percolation threshoRj,m, approaches 1 and gigantic number. However, what is expected for more rea-

hence the time interval between jumpswill be close to 1. sonnable system sizes is an abrupt decay for small time in-
In the vicinity of the percolation threshold®;,,, vanishes teryals.

and using the critical behavior of the mass of the largest
cluster, we can write , .
Multifractal representation
Pjumpx €07 9= €. (N Obviously, the number of jumps and the time delay be-
tween jumps will scale as power laws of the system size. To
single out exponents, the natural language is the so-called
multifractal framework. Here the word multifractal is not
uite appropriate since very few dimensions will appear,
eut.e) =(UMexp(—tIT)=Aeexp( ~Ate), (2 ﬂoweveliloweIO borrow from th)i/s framework the quantit%)s
whereA is a constant. and f, conventionally defined from the number of delays
The statistical distributiong,(t) of t as obtained by N(t)dIn(t) in the rang€t,t(1+dIn(t))] using a logarithmic
sweeping througtp values continuously fronp, to 1, is measure for the time, hend¢(t) =L%¢;(t)t,
obtained by superimposing the abayg(t, €), with a weight

Exploiting the definition of the Poisson process, in the vicin-
ity of the percolation threshold, we can write

proportional toP;,,, and this for all values o€, a= lim M
L*)ocln(L) ,
(1-pg)
(Pl(t):J @1(tv€)Pjump(6)dE
0 _ . In[N()]
f(a)=|lm|n(—L). (4)

oct‘z‘l/ﬁ{f exq—uﬂ)uzﬁdu], ®) b
0

The functionf(«) gives a spectrum that is representative for

hence ¢,(t)xt~@*YA) je., a very rapid decay since 2 the scaling properties of the distribution.
+1/8~9.2 in two dimensions. The above power-law deriva- We have just seen that the rangec¥alues covered by
tion has been obtained using the critical behavioPgf,,  this regime is fromx;=0 to a; =2—D. Let us now consider
and thus it is only valid for largeé However, the decay of  the corresponding values of
with p is so fast that the critical behavior dominates the en- In terms of the number of jumps, in two dimensions, we
tire distribution. have of ordemNy><L? jumps of sizeT,, hencef(ag)=2. At

The range of time scaldg,T,] covered by this regime threshold, the number density of jumpsNs>*L?¢,(T,)T;
is expected to be small, considering the large value of thiscL® ', Hence f(a;)=D—1/v~1.14. In between these
exponent. Indeed, the smallest time is encounteredpfor two points,(aq,f(ag)) and(aq,f(@y)), itis a simple matter
close to 1, and is of the order of To<L°. The longest times  to show that the power-law distributiagy, will give rise to a
are observed in the vicinity of the threshold whefe  straight line connecting the two points. Figure 1 shows the
«L97P andD=d— /v is the fractal dimension of the infi- spectrum in which we have indicated the valuespatat
nite cluster at percolation threshold. contribute dominantly.
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lll. DISTRIBUTION OF TIME INTERVALS BETWEEN final point of the spectrumg,=2 andf(a,)=0. We have
JUMPS BELOW THRESHOLD obtained the complete spectrum shown in Fig. 1.

Let us now consider jumps occuring below threshold.
Here the situation is a little different since the largest cluster IV. DISTRIBUTION OF JUMPS ABOVE THRESHOLD

will change from time to time. This makes the situation ap-  The size of the jumps is related to the cluster size distri-
parently complicated since one has to consider cases whefgition, since removing a site from the infinite cluster pro-
two large clusters smaller than the largest one, merge to bgp,ces a finite cluster whose size js1 wherej is the
come the largest. The exact formulation of this event in-jymp.” However, the statistical distribution of jump is not
volves quantities that are difficult to evaluate. However, re{gentical to the cluster size distribution because the probabil-
versing the arrow of time simplifies the problem jiy to disconnect a cluster of sizedepends on its morphol-

considerably. As time decreases, the occurence of a jumgqy and not only its mass, and hence this bias the jump size
means that a site has been chosand removefifrom the  istribution.

largest cluster, with no other conditions. The question is NOW | gt ys assume that at a fixed value mfthe jump size

to estimate the probability of this event. ~distribution,n(j,p), consists in a power-law aby now un-
Again, we focus first on the vicinity of Ehlfr percolation nown) exponent’, truncated in the same way as the cluster
threshold. The largest cluster has a siZece™ ™ whereo  gjze distribution(the maximum cluster size is also the maxi-

=1/(vD). The total number of occupied sitesps.“ (in the  mum jump size Thus we write the jump size distribution as
neighborhood of., the latter can be considered as indepen-

dent ofp and equal t.LY). Thus the probability for a jump n(j,e)=j - P(jery, (7)
is

where (x) is a constant for small arguments<1, and

Pjump™ | ~de o, (57  decays rapidly to zero fox>1.
When the jumps are integrated all along the process with

We can now reproduce the same argument as previousl. varying fromp. to 1, the resulting distributiom,(j) is
The statistical distributiorp, of delay between jumps is still obtained from
a Poisson distribution with a characteristic tifie P, . So

jump* 1-pc
that integrating ovep values from O up t@, nl(j):J P N(j,€)Pjump(€)de
0
Pe
t ocf ex _A!L*dt —1lo L*Zd *Z/O'd , (1-pc
oD | XN € I Te e ocrrf Y(j ') ePde 8)
0
2ty —do [P _ - Yoy~ 2l
oct L exp(—u “u “du.  (6) o T (@)
0 .

Hence ¢,(t)=t~2*¢ or numerically in two dimensions 2 Hence, itis a power-law distributiom (j)<j " with

—o=~1.6. Again, here we have implicitly extended the criti- 1
cal behavior down t@=0. This is legitimate only for times =7 -1+ =
much smaller than the ones occuring closepte 0. The D
latter regime that give rise to the largest times, corresponth order to determine”’
also to very rare events and thus the above distribution i
dominated by the critical behavior over most of its observ
able range of time intervals.

. 9)

1
Z42
14

and hencer’, we propose to com-
ﬁute the first moment of the jump size distributich
"=L9n,(j)jdj. The latter should be equal tb®—M.,,
where M., is the mass of the infinite cluster at threshold

M..=LP. From the distribution of, we get
Multifractal representation

D
What is the range of time delay3,,T,] covered by this JdeJL it™"dj. (10)
scaling law? The largest time delays are those found for 1
small p. In this case, the typical time interval ®,<L? in
two dimensions. The smallest comes from the vicinitypgf
and is obviously limited by finite-size effects. The lower D=d+(2—7)D (11)
time constant obtained here is of the orderTgf<L2 P,
which matches the longest time delay of the above-thresholgy
regime. Thus this regime is much wider than the previous
one, although it contains much less events. Thereforeqthe : d
parameter here varies from-2D to 2. 7'=1+ D-™ (12

At these times, we can compute the number of jumps as
defined in the preceding sectioN, is identical to the ex- Therefore, thantegratedjump size distributiom; from p,
pression computed above ahg<L° hence providing the to 1 has exactly the same exponent as the cluster size distri-

Thus identification with the previous expression leads to
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FIG. 2. Log-log plot of the histogram of time intervals between
jumps. The histogram is obtained fprvalues integrated in the the
interval [0,p¢], with ps=p. (symbol @) and p;=1 (symbol A).
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FIG. 3. Log-log plot of the histogram of jump sizes. The histo-
gram is obtained fop values integrated in the intervgd,p;], with
p;=p. (symbol @) and p;=1 (symbol A). The dotted lines are

The dotted line is a linear regression through the data. The systelfinear regressions through the data. The system size=i8000.

size isL=3000.

bution at threshold. This result, in spite of its apparent sim

mulative number of time intervals between jumpé(t)

=/[{n(t")dt’, occurring betweep=0 andps, for two dif-

plicity is not obvious since, at threshold, the jump size dis-ferent choices opy, eitherp. or 1. A good agreement with

tribution n(j,p;) has a different exponentr’. From the
previous equations we can now obtain its expression as

(d-2)

[ 1 1
T=7+1—— D

D

2—o+

1
Z 42
14

(13
or 7'~1.6 in two dimensions, as comparedts 2.05.

V. DISTRIBUTION OF JUMPS BELOW THRESHOLD

the predicted behavior is observed. A first power-law distri-
bution is obtained ap;=p., with a measured exponent 1.5
to be compared with the prediction—-2r=1.6. Above
threshold, all time intervals are extremely smallless than
about 5, and the distribution develops a very abrupt peak at
t=1. As discussed above, the predicted slopeliB~8.2
of this regime cannot be measured in practice.

Figure 3 shows the cumulative histogram of the jump
sizes for all jumps taking place frop=0 to p;, for both
values ofp;=p. and p;=1. Both plots show a power-law

Below the threshold, we have to integrate the distributionyepayior, with exponents, respectively! =1.55 and 7"

of jumps, over allp values, however, at the threshold, the
frequency of jumps is much larger than for smalvalues,

=2.04, to be compared to the predicted valués 1.60 and
'=2.05. Thus, both data sets concerning the jump size dis-

and the distribution of jumps contains large as well as smallipution and the delay between jumps are fully consistent

values at threshold. For small the jumps are only small

ones, and rare. Hence, here the immediate vicinity of thre-

sold will mask contributions from smatl values, and hence,

na(j)ny(j,pe) (14

or

—2+o

na(j)oe 7 o] (15)

However, in contrast with the case of the distribution of
delays,j first increases and reaches its maximumP at p

=p., and then decreases back to 1. The distribution of al

jump sizes fromp=0 up to thresholdh,, is progressively
erased ap increases fronp, to 1, and is replaced hy;. No
memory is preserved from the regine<p. because the
total number of jumps is much greater above threshold.

VI. NUMERICAL SIMULATIONS

with our predictions.

VII. CONCLUSIONS

Following the same lines, previous results can be ex-
tended to other physical quantities displaying a critical be-
havior at the percolation threshol¢.g., discontinuities of
the conductange Thus, this may allow to have access to the
statistics of fluctuations as the parameter is continuously
varied through the critical point. In particular, it has been
shown in various composite systems that temperature could

lay the role ofp [12,13. This was proposed to give quan-
itative account of the variation of the conductivity of dirty
superconductors or of epoxy/carbon black composite with
temperature. The unusual noise properties of these systems
might be addressed using the present approach.
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