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Statistics of largest cluster growth through constant rate random filling of lattices

J. E. de Freitas,1,2 L. S. Lucena,2 and S. Roux2,3

1Departamento de Matematica, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59073, Brazil
2International Center for Complex Systems and Departamento de Fisica Teorica e Experimental,
Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte 59073-970, Brazil

3Laboratoire ‘‘Surface du Verre et Interfaces,’’ Unite´ Mixte de Recherche CNRS/Saint-Gobain, 39 Quai L. Lefranc,
93303 Aubervilliers Cedex, France

~Received 26 July 2000; revised manuscript received 11 June 2001; published 30 October 2001!

In this paper we consider a percolation model where the probabilityp for a site to be occupied increases
linearly in time, from 0 to 1. We analyze the way the largest cluster grows in time, and in particular, we study
the statistics of the ‘‘jumps’’ in the mass of the largest cluster, and of the time delay between those events.
Different critical behaviors are observed below and above the percolation threshold. We propose a theoretical
analysis, and we check our results against direct numerical simulations.
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I. INTRODUCTION

Percolation is now a well-known theory that has be
applied successfully to a wide variety of problems. Mo
critical properties of this model have been clarified throug
considerable number of published works. Many excellent
views on this theory can be found in Refs.@1–6#.

However, most studies either concerned the static pro
ties at the critical point, or time-dependent properties of va
ants of the standard percolation problem since no time
present in the latter. These variants~such as ‘‘spreading per
colation’’ @7#, ‘‘invasion percolation’’ @8#, ‘‘stirred percola-
tion’’ @9#, ‘‘self-organized percolation’’ @10#, ‘‘kinetic
growth models’’ @11#. etc.!, which include time, generally
also affect the generic definition of the percolation mod
Albeit most often scaling relations can be derived to rel
the dynamical properties of these models to the critical
ponents of percolation, the connection is indirect.

In the present study, we consider the standard percola
model, with an occupation probabilityp continuously in-
creasing in time from 0 to 1. In practice, a new empty s
will be added~‘‘occupied’’! at every time step in a lattice o
finite sizeL, so thatp5t/Ld. We specifically study the evo
lution of the largest clusterM (t) at each time step. Its mas
does not increase in a steady fashion, but rather by sud
increases@hereafter referred to as ‘‘jumps’’j 5M (t11)
2M (t)# separated by long time intervals~called ‘‘delays’’
hereafter! where the largest cluster remains unchangedj
50). Those jumps and delays do vary considerably asp goes
from 0 to 1. However, as will be shown below, if the distr
butions of jumps and delays are integrated over the en
range ofp values, those distributions will capture some a
pects of the critical behavior encountered in the vicinity
the percolation threshold. Since fluctuations are singula
the critical point, the above quantities receive dominant c
tributions from the vicinity of the percolation threshold, an
thus the statistics of the jumps preserve information from
critical point although the latter has been swept through
this process. Indeed the statistical distribution of jump si
has a simple power-law behavior. Surprisingly, if we stop
the percolation threshold, the jump size distribution in
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grated fromp50 to p5pc also displays a power law form
but with adifferentexponent. Concerning the delay betwe
jumps we show that their distribution consists not in one,
two power laws. These predictions are checked against
merical simulations.

The motivation for this work is twofold. First, there ar
systems in which the percolation control parameter can
continuously adjusted, such as composites in which the t
perature allows to open or close contacts between parti
@12,13#. In such systems, one may be interested in quant
ing the fluctuations in any macroscopic property sensitive
the connectivity~such as the electrical conductivity!. Similar
attempts have been proposed in a related context such a
study of resistance jumps during mercury porosimetry at
onset of the breakthrough point, by Katzet al. @14# ~the latter
problem was revisited theoretically in Refs.@15,16#!. In
those problems, it may be difficult to adjust the control p
rameter to stop the system precisely at its percolation thre
old. However, a more secure procedure would be to v
continuously the control parameter in order to scan throu
the percolation. We have chosen such a procedure here.
mass of the largest cluster is only one among the many
servables that can be chosen, but it is the most natural cri
quantity to consider in the context of percolation since
concerns the order parameter, and as mentioned abov
already displays surprising features. The second motiva
comes from algorithms recently proposed to locate the c
cal point. The principle of such methods is to either increa
or decrease the control parameter, depending on whethe
order parameter is smaller or larger than a prescribed va
The convergence of the method and the oscillation of
control parameter around the critical point are controlled
the ‘‘noise’’ ~both jumps and delays to use the above term
nology!. These two applications are not specifically studi
in the present paper, but they both require the results
sented herewith.

We use here the standard notations used in percola
theory.p denotes the occupation probability, andpc the per-
colation threshold. We also calle the differencee[up
2pcu. L is the system size. Classically, the correlation len
j and probability to belong to the infinite cluster,P` , have a
©2001 The American Physical Society05-1
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critical behavior characterized by the exponentsn and b,
such thatj}ueu2n and P`}eb above threshold.D will de-
note the fractal dimension of the infinite cluster at the per
lation threshold. It is related to the previous expone
throughD5d2b/n.

We will first consider the time intervals between jump
considering thep values above percolation below the thres
old, and then below threshold. Then we will study the dis
bution of the jump amplitude, above and below the perco
tion threshold.

II. DISTRIBUTION OF TIME INTERVALS BETWEEN
JUMPS ABOVE PERCOLATION THRESHOLD

Let us consider the limit of a large system size so that
addition of a few sites does not affect the value ofp. Then at
eachp, the probability distributionw1(t,e) of time intervals
t, between jumps is an exponential distribution~Poisson pro-
cess! of characteristic timeT}1/Pjump where Pjump is the
probability that the newly added site is the nearest neigh
to the largest cluster. The number of those vacant site
proportional to the mass of the largest cluster itself. Fop
larger than the percolation threshold,Pjump approaches 1 and
hence the time interval between jumpsT will be close to 1.
In the vicinity of the percolation threshold,Pjump vanishes
and using the critical behavior of the mass of the larg
cluster, we can write

Pjump}jD2d5eb. ~1!

Exploiting the definition of the Poisson process, in the vic
ity of the percolation threshold, we can write

w1~ t,e!5~1/T!exp~2t/T!5Aebexp~2Ateb!, ~2!

whereA is a constant.
The statistical distributionw1(t) of t as obtained by

sweeping throughp values continuously frompc to 1, is
obtained by superimposing the abovew1(t,e), with a weight
proportional toPjump and this for all values ofe,

w1~ t !5E
0

(12pc)

w1~ t,e!Pjump~e!de

}t2221/bH E
0

`

exp~2ub!u2bduJ , ~3!

hence w1(t)}t2(211/b), i.e., a very rapid decay since
11/b'9.2 in two dimensions. The above power-law deriv
tion has been obtained using the critical behavior ofPjump
and thus it is only valid for larget. However, the decay ofT
with p is so fast that the critical behavior dominates the
tire distribution.

The range of time scales@T0 ,T1# covered by this regime
is expected to be small, considering the large value of
exponent. Indeed, the smallest time is encountered fop
close to 1, and is of the order of 1,T0}L0. The longest times
are observed in the vicinity of the threshold whereT1
}Ld2D andD5d2b/n is the fractal dimension of the infi
nite cluster at percolation threshold.
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The above scaling law is mostly of theoretical intere
since observing this power-law decay over one decade
size requires in two dimensions systems of sizeL'1010, a
gigantic number. However, what is expected for more r
sonnable system sizes is an abrupt decay for small time
tervals.

Multifractal representation

Obviously, the number of jumps and the time delay b
tween jumps will scale as power laws of the system size.
single out exponents, the natural language is the so-ca
multifractal framework. Here the word multifractal is no
quite appropriate since very few dimensions will appe
however we borrow from this framework the quantitiesa
and f, conventionally defined from the number of dela
N(t)d ln(t) in the range@ t,t„11d ln(t)…# using a logarithmic
measure for the time, henceN(t)5L2w1(t)t,

a[ lim
L→`

ln~ t !

ln~L !
,

f ~a![ lim
L→`

ln@N~ t !#

ln~L !
. ~4!

The functionf (a) gives a spectrum that is representative
the scaling properties of the distribution.

We have just seen that the range ofa values covered by
this regime is froma050 toa1522D. Let us now consider
the corresponding values off.

In terms of the number of jumps, in two dimensions, w
have of orderN0}L2 jumps of sizeT0, hencef (a0)52. At
threshold, the number density of jumps isN1}L2w1(T1)T1
}LD21/n. Hence f (a1)5D21/n'1.14. In between these
two points,„a0 , f (a0)… and„a1 , f (a1)…, it is a simple matter
to show that the power-law distributionw1 will give rise to a
straight line connecting the two points. Figure 1 shows
spectrum in which we have indicated the values ofp that
contribute dominantly.

FIG. 1. Spectrum of the delay between jumps in thef (a) for-
malism. The first steep slope describes the jump distribution ab
percolation threshold, whereas the second one is relative to
jumps occurring below threshold.
5-2
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III. DISTRIBUTION OF TIME INTERVALS BETWEEN
JUMPS BELOW THRESHOLD

Let us now consider jumps occuring below thresho
Here the situation is a little different since the largest clus
will change from time to time. This makes the situation a
parently complicated since one has to consider cases w
two large clusters smaller than the largest one, merge to
come the largest. The exact formulation of this event
volves quantities that are difficult to evaluate. However,
versing the arrow of time simplifies the proble
considerably. As time decreases, the occurence of a j
means that a site has been chosen~and removed! from the
largest cluster, with no other conditions. The question is n
to estimate the probability of this event.

Again, we focus first on the vicinity of the percolatio
threshold. The largest cluster has a sizes* }e21/s wheres
[1/(nD). The total number of occupied sites ispLd ~in the
neighborhood ofpc , the latter can be considered as indepe
dent ofp and equal topcL

d!. Thus the probability for a jump
is

Pjump}L2de21/s. ~5!

We can now reproduce the same argument as previou
The statistical distributionw2 of delay between jumps is stil
a Poisson distribution with a characteristic timeT}Pjump

21 . So
that integrating overp values from 0 up topc

w2~ t !}E
0

pc
exp~2A8L2dte21/s!L22de22/sde

}t221sL2dsE
0

pc/2

exp~2u21/s!u22/sdu. ~6!

Hence w2(t)}t221s or numerically in two dimensions 2
2s'1.6. Again, here we have implicitly extended the cri
cal behavior down top50. This is legitimate only for times
much smaller than the ones occuring close top50. The
latter regime that give rise to the largest times, correspo
also to very rare events and thus the above distributio
dominated by the critical behavior over most of its obse
able range of time intervals.

Multifractal representation

What is the range of time delays@T1 ,T2# covered by this
scaling law? The largest time delays are those found
small p. In this case, the typical time interval isT2}L2 in
two dimensions. The smallest comes from the vicinity ofpc ,
and is obviously limited by finite-size effects. The low
time constant obtained here is of the order ofT1}L22D,
which matches the longest time delay of the above-thresh
regime. Thus this regime is much wider than the previo
one, although it contains much less events. Therefore, tha
parameter here varies from 22D to 2.

At these times, we can compute the number of jumps
defined in the preceding section.N1 is identical to the ex-
pression computed above andN2}L0, hence providing the
05140
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final point of the spectrum,a252 and f (a2)50. We have
obtained the complete spectrum shown in Fig. 1.

IV. DISTRIBUTION OF JUMPS ABOVE THRESHOLD

The size of the jumps is related to the cluster size dis
bution, since removing a site from the infinite cluster pr
duces a finite cluster whose size isj 21 where j is the
‘‘jump.’’ However, the statistical distribution of jump is no
identical to the cluster size distribution because the proba
ity to disconnect a cluster of sizes depends on its morphol
ogy and not only its mass, and hence this bias the jump
distribution.

Let us assume that at a fixed value ofp, the jump size
distribution,n( j ,p), consists in a power-law of~by now un-
known! exponentt8, truncated in the same way as the clus
size distribution~the maximum cluster size is also the max
mum jump size!. Thus we write the jump size distribution a

n~ j ,e!5 j 2t8c~ j e1/s!, ~7!

where c(x) is a constant for small argumentsx!1, and
decays rapidly to zero forx@1.

When the jumps are integrated all along the process w
p varying from pc to 1, the resulting distributionn1( j ) is
obtained from

n1~ j !5E
0

12pc
n~ j ,e!Pjump~e!de

} j 2t8E
0

12pc
c~ j e1/s!ebde ~8!

} j 2t82(11b)s.

Hence, it is a power-law distributionn1( j )} j 2t9 with

t95t8211
1

D S 1

n
12D . ~9!

In order to determinet9 and hencet8, we propose to com-
pute the first moment of the jump size distributionJ
5Ld*n1( j ) jd j . The latter should be equal toLd2M` ,
where M` is the mass of the infinite cluster at thresho
M`}LD. From the distribution ofj, we get

J}LdE
1

LD

j 12t9d j . ~10!

Thus identification with the previous expression leads to

D5d1~22t9!D ~11!

or

t9511
d

D
5t. ~12!

Therefore, theintegratedjump size distributionn1 from pc
to 1 has exactly the same exponent as the cluster size d
5-3
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bution at threshold. This result, in spite of its apparent s
plicity is not obvious since, at threshold, the jump size d
tribution n( j ,pc) has a different exponent, t8. From the
previous equations we can now obtain its expression as

t85t112
1

D S 1

n
12D522s1

~d22!

D
~13!

or t8'1.6 in two dimensions, as compared tot'2.05.

V. DISTRIBUTION OF JUMPS BELOW THRESHOLD

Below the threshold, we have to integrate the distribut
of jumps, over allp values, however, at the threshold, th
frequency of jumps is much larger than for smallp values,
and the distribution of jumps contains large as well as sm
values at threshold. For smallp the jumps are only smal
ones, and rare. Hence, here the immediate vicinity of th
sold will mask contributions from smallp values, and hence

n2~ j !}n1~ j ,pc! ~14!

or

n2~ j !} j 2t8} j 221s. ~15!

However, in contrast with the case of the distribution
delays,j first increases and reaches its maximum}LD at p
5pc , and then decreases back to 1. The distribution of
jump sizes fromp50 up to thresholdn2, is progressively
erased asp increases frompc to 1, and is replaced byn1. No
memory is preserved from the regimep,pc because the
total number of jumps is much greater above threshold.

VI. NUMERICAL SIMULATIONS

We have performed numerical simulation of this proble
keeping track of the clusters, as sites are progressively o
pied on a square lattice. System size up toL54000 have
been considered. Figure 2 shows the log-log plot of the

FIG. 2. Log-log plot of the histogram of time intervals betwe
jumps. The histogram is obtained forp values integrated in the th
interval @0,pf #, with pf5pc ~symbol d) and pf51 ~symbol n).
The dotted line is a linear regression through the data. The sys
size isL53000.
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mulative number of time intervals between jumps,N(t)
5* t

`n(t8)dt8, occurring betweenp50 andpf , for two dif-
ferent choices ofpf , eitherpc or 1. A good agreement with
the predicted behavior is observed. A first power-law dis
bution is obtained atpf5pc , with a measured exponent 1.
to be compared with the prediction 22s51.6. Above
threshold, all time intervalst are extremely small~less than
about 5!, and the distribution develops a very abrupt peak
t51. As discussed above, the predicted slope 111/b'8.2
of this regime cannot be measured in practice.

Figure 3 shows the cumulative histogram of the jum
sizes for all jumps taking place fromp50 to pf , for both
values ofpf5pc and pf51. Both plots show a power-law
behavior, with exponents, respectively,t851.55 and t9
52.04, to be compared to the predicted valuest851.60 and
t952.05. Thus, both data sets concerning the jump size
tribution and the delay between jumps are fully consist
with our predictions.

VII. CONCLUSIONS

Following the same lines, previous results can be
tended to other physical quantities displaying a critical b
havior at the percolation threshold,~e.g., discontinuities of
the conductance!. Thus, this may allow to have access to t
statistics of fluctuations as thep parameter is continuously
varied through the critical point. In particular, it has be
shown in various composite systems that temperature c
play the role ofp @12,13#. This was proposed to give quan
titative account of the variation of the conductivity of dirt
superconductors or of epoxy/carbon black composite w
temperature. The unusual noise properties of these sys
might be addressed using the present approach.
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